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Abstract— Gesture Elicitation Studies (GES) are a widely
used empirical method to develop gesture vocabularies, in-
teraction models and methods for gesture-based systems in
different contexts. While GES show great promise to identify
user-defined gestures, there are inherent problems with current
methods used for GES. Especially during the ongoing pandemic,
it has been nearly impossible to conduct in-person, in-lab GES,
while ensuring the safety and well-being of the participants,
and complying with social distancing regulations. Further,
with prevailing experiment designs, increasing the number of
participants is time consuming, while in-lab environments also
limit ecological validity. This study explores an intuitive way of
conducting self-guided GES using immersive Virtual Reality
(VR), utilizing its capability to simulate various contexts to
enhance ecological validity. We present a methodology and a
tool set that use an immersive VR environment to conduct
ecologically valid GES (as a use case) while requiring minimal
involvement by the investigator. We evaluate our method using
the case of a smart home environment and measure participant
acceptance and discuss opportunities and challenges involved in
this method. We believe that this study will help HCI research
to move forward with participatory design research, even when
lab experiments are difficult to conduct.

I. INTRODUCTION

Originating from behavioral science, user studies have been
an effective empirical research method that was instrumental
in developing many interaction theories and models such as
Fitts’ Law. To date, user studies remain one of the most
effective approaches in human-computer interaction (HCI)
to make generalizable findings. One of the most popular
areas of user studies is to study user defined system inputs.
Especially with the proliferation of new human-computer
interactions and interfaces, users became central, in research,
for eliciting their inputs to analyse user defined interactions.
This tendency is evident in the works of ’participatory design’
by Schuler et al. [1]. Having emerged from participatory
design, Gesture Elicitation Studies (GES) are a popular
and commonly used user study method [2] to identify user
preferred gestures to interact with a certain referent (desired
effect of an action) [3].

As many authors such as Villarreal-Narvaez et al. [4] cite,
GES were introduced by the work of Wobbrock et al. [5].
Using this method, in 2009, Wobbrock et al. [6] presented
an approach for designing tabletop gestures by eliciting 1080
gestures from 20 non-technical users and found the users’
agreement of gestures to given referents. Later Vatavu et
al. [7] proposed a refinement for eliciting the best gestures
based on agreement rate. Many researchers then adopted
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Wobbrock and Vatavu et al’s work in GES to determine
the best gestures when designing systems, applications, de-
vices, automobiles, etc. The main objectives of GES are to
collect a gesture set from the users and to understand user
behavior [6] while investigating whether there are gesture
agreements between users [4]. GES essentially contribute to
the design of good gestures that possess ease-of-performance,
memorability, discoverability or reliability [8], [3].

Despite its effectiveness, there are notable limitations in
the methods of conducting GES which are common in
investigator led, in-lab user studies in HCI. This was further
highlighted with the restrictions imposed during the pan-
demic, making it challenging to follow existing methods to
conduct user studies.

A. Challenges in conducting GES

There are different techniques that researchers follow to
conduct GES (cf. Section II), each with their own challenges.
Most GES are conducted with participants being present
in-person in lab conditions. There are a few studies that
have used web-based tools to interact with participants,
such as Amazon Mechanical Turk (AMT) [9] and video
conferencing tools, where the investigators use techniques
such as Wizard of OZ (WoZ), speak out loud etc. to create
the presence of a referent and to guide the users. However,
recruiting participants for such methods is difficult and there
are inherent issues with tool such as AMT. Madapana et
al. [9] have shown that AMT workers do not pay careful
attention to user study instructions due to their urge to finish
a task and start another one to receive the financial incentives.
Hence the quality of the collected data is low. Unfortunately,
during the COVID-19 pandemic universities and research
labs being closed to non-critical experiments, made in-person
GES difficult to conduct. Thus, the HCI community is keen
to address this challenge by looking at various methods of
conducting user studies (in general) with remote participants.

In addition to pandemic restrictions, in-lab GES take
considerable amounts of time, both of the investigator and the
participants, as experiments are conducted in series (not par-
allel). Further, the ’Hawthorne effect’ [10] documented nearly
60 years ago that participants may behave differently in lab
experiments due to the stress of being observed or the rewards
offered for participation. Thus, in-lab experiments may not
extract a user’s typical behaviour is another concern. Also
creating ecologically valid physical setups and maintaining
them until the completion of the study is time consuming
and challenging. Due to these challenges, GES typically
secure a small number of participants. As per Koeman’s [11]



review, lab-based research is still common, yet, the majority
of these studies have fewer than 20 participants [12]. The
inherent lack of diversity of the results and a low statistical
power makes generalization of their findings difficult [13].
On practical difficulties, recorded videos of participants with
fixed camera angles, that are generally collected in these
studies, reduce the flexibility of looking at a gesture in
other angles when such examination is required. Furthermore,
data visualization and privacy challenges underlie the whole
process; visualizing gestures requires a significant effort from
researchers and experiment recordings often do not preserve
the privacy of the participants, even if they do not wish to
be identified.

To mitigate these challenges, we conducted an experimen-
tal GES using a fully immersive Virtual Reality (VR) envi-
ronment to study user behaviours, and gestures in particular.
In this paper we describe this self-guided fully immersive Hu-
man Device Gesture Interaction (HDGI) study and its design
and implementation along with the participants’ experience
and acceptance of using VR for GES. As highlighted by
Steed et al. [14], currently there are no easy-to-use tools to
run VR experiments and there are various technical issues
with implementing and distributing experiments to consumer
devices. Therefore, we believe the present methodology and
the prototype we used to collect and visualise user defined
gestures in this paper will trigger further research on using
immersive VR to conduct remote GES (and user studies in
general) by mitigating technical barriers.

II. RELATED WORK

A. Existing methodologies to conduct GES

Methods to conduct GES can be differentiated based on
the ways they present referents to participants, and the
recording mechanisms of gestures. Vogiatzidakis et al. [15]
discuss commonly utilised approaches to present referents
to a participant including text on screens or verbal feedback,
video presentation or still images and manipulating the actual
artefact. Manipulating actual artefacts is the best approach,
yet can be challenging in many scenarios. The other methods
have lesser ecological validity as participant may behave
differently as they realise that they are not interacting with the
real device. As for recording gestures, motion capture [16]
and questionnaires are sometimes used. Video recording is a
common mechanism to record elicited gestures [15], [4].

Looking at GES techniques, the WoZ method [17] which
was initially used in natural language interfaces, has become a
popular approach to identify user defined gestures. Wobbrock
et al.’s [6] initial work has adopted this technique. In this
approach, participants were shown the effect of their gesture
by an unseen technical wizard (human) manipulating the sys-
tem. Participants were unaware of the human operator, thus
WoZ design makes the participant feel that their interactions
are actively being recognized, allowing them to use it as if
they are interacting with a real gesture recognition system.
This method allows rapid prototyping and has been widely
used by researchers to conduct GES [18], [19], [20], [21]. It
has been identified that the illusion of system autonomy is

of paramount importance to the results in a WoZ design.
Henschke’s [22] experiments using WoZ, reveal that this
illusion will be dispelled if the user becomes aware that the
system is not operating autonomously.

Another major criticism against this method is that it
always requires the investigator/experimenter (wizard) to be
present during the experiment period and thus the exper-
iments are conducted sequentially, unless there are many
experimenters and equally set up lab spaces. There are other
techniques such as the think-aloud protocol [23] which is
used alongside WoZ to overcome some of its pitfalls but
it still requires conducting experiments in series. Further,
Schieben et al. [24] has used another approach named ’theater
system’. This technique again extends WoZ by making the
wizard/investigator play a confederate who is no longer
hidden. The confederate can play through different use cases
with the participants as if they would play a role in a
theater [24]. This techniques is used by Mahr et al. [25] and
May et al. [26] in elicitation studies conducted to investigate
driving related scenarios but it still requires the presence
of the investigator. Commonly, these approaches require in-
person setups and experiment conduct is chronological.

B. Using immersive VR to conduct user studies

One of the objectives of immersive environments is to
create the perception of ’being present’ in a different en-
vironment or context by immersing the user in a computer
generated setting [27]. They have long been used for user
studies, especially when creating an ecologically valid envi-
ronment for the experiment. For example, VR has been used
in investigating driving experiences [28], [29]. Weidner et
al.’s [30] comparison of VR and non-VR Driving Simulations
show that data gathered from VR simulators is similar to
stereoscopic 3D or 2D screens and they did not observe
significant differences regarding physiological responses or
lane change performance. Holzner et al. [31] indicate that a
VR approach is a very cost effective way for testing a smart
home environment together with a Brain Computer Interface
(BCI) system. Further, Spoladore et al. [32] introduce a
VR smart home simulator to address a variety of issues
involved in the development of Ambient Assisted Living
(AAL) solutions. Bates et al.’s [33] work proposed an action
recognition and learning system in which researchers can
collect examples of human behaviour using a VR application,
which overcomes the difficulties associated with capturing
performances in physical environments.

In earlier studies Brooks et al. [34] examined the potential
for using VR in memory rehabilitation. This is an indication
of researchers attempting to utilise VR environments to
bring ecological validity to their user studies. Kourtesis et
al. [35] have developed VR-EAL (Virtual Reality Everyday
Assessment Lab) to conduct an ecologically valid exami-
nation of everyday prospective memory. In comparison to
the traditional method, immersive VR has shown a higher
validity [36]. Huygelier et al.’s [37] study on acceptance
of immersive head-mounted virtual reality in older adults
strengthens its ability to reach diverse demographics for user



studies. Borrego et al.’s [38] study evinces that immersive
environments could enable the navigation and exploration
of real-life sized virtual environments, without any notable
adverse effects. Radiah et al. [39] and Ratcliffe et al.’s [40]
review of challenges and opportunities on remote VR studies
show that the pandemic has increased the use of VR by
consumers, and that users are open to new uses of VR.
Mottelson et al. [13] have validated VR experimentation
outside a lab environment and have shown that it is feasible
to get reliable data. Thus, VR provides a promising direction
to help continue HCI research and participatory design user
studies.

III. SELF-GUIDED, REMOTE GESTURE ELICITATION

The state of the art shows the potential as well as interest in
the HCI community to conduct remote user studies using im-
mersive VR. Our methodology for conducting GES addresses
the challenges with current GES stated in section I-A while
providing added benefits such as self guidance for users in
the experiment setup, ability to conduct GES in parallel with
multiple participants, preserving privacy of the user as we
do not collect any video of real user actions or their voice
that would potentially make them personally identifiable.
Further, the method allows us to conduct elicitation studies
in an ecologically valid setup compared to a stereotypical lab
setup and allows the investigator to visualize gestures at any
required angle.

We selected a smart home environment as it is difficult to
create such a setup in a lab environment as it may require
several smart devices and complicated physical setup to
create ecological validity for the experiment. In our GES,
we collected user defined gestures to control a selected set
of smart apparatus in a room space. The environment setup
is easily customizable as required by researchers. Finally we
evaluated the participant experience and acceptance for using
VR for GES.

A. Apparatus

We used the Unity game engine to develop the VR
application. Our application is capable of running on both
Oculus Quest 1 and 2 VR HMDs. We selected Oculus
Quest as it used to conduct industry employee training
(e.g., Walmart [41]) and currently leads the VR HMD sales
rankings [42]. Additionally Oculus was the first to introduce
in-built hand tracking on consumer grade VR HMDs and has
the highest share of Steam (online game platform) users with
a VR headset worldwide as of February 2021 [43].

B. Participants Recruitment

As we are conducting the GES remotely, we aim to
collect a diverse set of participants’ data from different demo-
graphics. Hence, participants joined this experiment in two
different ways. The first option was, if a participant owned
a VR HMD, they could visit the HDGI study instruction
page and follow the instructions and complete the user study
whenever they want (users with VR devices could download
and install it onto their devices and conduct the experiment).

The second option was that participants could visit our lab
at a time allocated via a booking system and use one of the
available VR HMD to conduct the experiment on their own,
without the requirement of the investigator being present in
the lab. Multiple participants could do the study in parallel
based on the available HMDs. There were participants with
previous VR experience and without. We conducted the study
in a short period of time (three weeks) within which we
collected gestures from 53 participants, who originated from
15 countries (27 females, 23 males, 1 non-binary and 2
participants who did not disclose their gender). Participants
were distributed from age brackets 21 - 25 years being the
first and 61 - 65 years being the last; highest of 26.4% of
participants were in the age group of 26 - 30 year bracket.
Since the VR consumer market is rapidly growing [14], we
now recognize that there is a potential to reach out to many
participants through this method.

C. VR application
The VR application was developed by considering

reusability, better participant experience, and ease of use
for the investigator after collection of the data. The ap-
plication is extensible to different contexts and usages for
other researchers. The app is modularized and includes three
main modules: the environment setting module, the gesture
recording module and the gesture visualization module. The
modularization creates reusability as other HCI researchers
could utilize these modules in their own VR development
with Unity, by customizing the application to fit their research
purposes. Additionally, the app was built as a standalone
application allowing direct download, instead of publishing
on readily available VR app stores. The VR application file
was hosted on a web server for participants to download and
to execute on their own.

In contrast to a majority of approaches taken by researchers
to conduct VR remote studies, we used a mix of written
(textual) information and voice. As our design aimed for self-
guidance, unlike in Radiah’s et al. [39] method of displaying
instruction to participants, we included a virtual voice assis-
tant supplementing the available textual instructions. During
the trial and at the end of the experiment, this virtual agent
guides the users through the experiment.

In our VR app, unlike in the majority of studies described
in our related work section, we could not use the VR
controllers as the main purpose of this study was to collect
user-defined hand gestures. Thus, we forced participants to
use their hands by making hand interaction mandatory for
application loading. Participants can only enter the app once
they rest their controller. Otherwise, the application will not
start. We used Oculus Quest’s in-built hand tracking capabil-
ities to record users’ performed gestures. Gesture recording
and users’ head movement data were recorded in JSON files.
Recording frequency was customizeable and set during app
assembly time. Recorded JSON files included rotation data
(in quternions) of hand bones and user’s head position (as
a 3D vector). A sample gesture data file can be seen here1.

1https://madhawap.github.io/vr-ges/json_viewer.html
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Once the experiment is completed, these gesture data files
were pushed to a secured server. We indicated to users that
even when we are collecting the virtual hand and head data,
we only do so for 5 seconds for each affordance. Further,
we did not collect any video footage of users’ hands or their
physical space, only the hand motion data.

Fig. 1: VR Room setup

D. Experiment Design

The experiment is divided into five stages: a user informa-
tion guide, a pre-questionnaire, a self-guided experiment trial,
the actual experiment, and a post experiment questionnaire.
Each participant goes through each of these stages on their
own, and in this order, to complete the full study. The
sequence of stages were planned as per a typical HCI user
study design in Lazar et al’s. [44] guide on designing HCI
experiments.

During the study we evaluate the participant’s comfort with
the presented features of our VR application. This would
help to investigate what further alterations are required in
the VR application design for GES purposes. To make the
experiment self-guided, we followed the independent study
method proposed by Radiah et al. [39]; that is, the study was
conducted asynchronously, where participants ran the study
on their own at any time they wanted. No experimenter was
present during the study, whether it was completed in their
home or in our lab.

Firstly, participants were asked to go through the informa-
tion guide to get an overall understanding of the study and
then to install and setup the VR application. Once a partici-
pant successfully installed the application, they were asked to
answer a pre-questionnaire which covered basic demographic
data and their previous experience with Augmented Reality
(AR)/VR HMDs. Once completed, they entered the VR
application.

We followed a within-group design as GES tasks could
have large individual differences. However, to reduce the
impact of the learning effect [44] we balanced the order of
the tasks that participants performed and provided sufficient
time for training. Therefore, we let users go through a very
short self-phased and self-guided trial setup to learn and
practice before they enter the real elicitation study. Research
has shown that providing sufficient training time for users to
get acquainted with the study can greatly reduce the learning
effect during the actual task sessions. In the trial scene,
participants were guided to interact with an affordance which
was not part of the main study. This step is equivalent to
a participant being briefed by an investigator, and it also
provided them with a chance to perform a trial and familiarize
with the setup as suggested by Lazar et al. [44].

The experiment can be conducted in any venue that has
at least a 1m x 1m space. During the actual experiment
each participant interacts with 42 affordances spread across
12 smart objects (cf. Table I) in a smart home environment.
Each participant interacts with all 42 affordances presented
to them in an order balanced fashion. Compared to elicitation
studies in the literature, our study contains a higher number
of affordances, yet keeps the study well below recommended
HCI study times. It is generally suggested that the appropriate
length of a single experiment session should be 60-90 minutes
or shorter [45]. In real life situations, smart home users will
interact with multiple devices instead of a single device.
Thus we assumed this will enhance the ecological validity
of the elicitation study and allow to observe if users perform
gestures differently in such settings. We were aware of the
problem of fatigue that could be caused by multiple experi-
mental tasks. In order to address this, we designed experiment
tasks economically and made the participant aware that they
are spending 15 seconds on each affordance, only.

Figure 1 shows the room setup with the device placements.
When a participant is asked to interact with a certain device
affordance, they are given a timed 15 seconds, which is
split into 10 seconds to think and prepare and 5 seconds
to perform the gesture. Since Vatavu et al’s [46] study shows
that there is a negative correlation between agreement rates
for a gesture and thinking time, we decided to keep the
thinking time less than the average time given in Vatavu et
al.’s [46] study, which is 20.5 seconds. Further, to address
another challenge in gesture elicitation studies which is to
identify when the gesture started and when the gesture
ended and whether it is a gesture that a user performed, we
used the following steps. When participants were given an
affordance to interact with, the thinking time and gesture
performance times were visualized with a colour-changing
progress bar. Additionally, when it is time for the participant
to perform a gesture, their virtual hands change color to
indicate that the system is recording the gesture at that time.
See Figure 2e and 2f for the thinking time and recording time
visual feedback mechanisms. This process continues until a
participant completes all of the affordances.

Devices Affordances
1. Bladeless Fan Turn on | Increase Temperature | Decrease

Temperature | Enable swing mode | Turn off
2. Chandelier Turn on | Turn off
3. Double Window Open the window | Close the window
4. Floor Lamp Turn on | Turn off
5. Hung Window Open the window | Close the window
6. Inverted Air condi-
tioner

Turn on | Increase Temperature by 1 unit |
Decrease Temperature by 5 units | Turn off

7. LED TV (Model 1) Turn on | Go to next channel | Go to previous
channel | Turn off

8. LED TV (Model 2) Turn on | Go to next channel | Go to previous
channel | Turn off

9.Security Camera Turn on | Turn Right | Turn Left | Turn off
10. Speaker System Turn on | Increase Volume | Decrease Volume

| Play the next track | Increase volume by two
units | Turn off

11. Table Lamp Turn on | Turn off
12. Ventilator Turn on | Increase speed | Decrease speed |

Turn off

TABLE I: Affordances List



(a) Snapshot - training session (b) Initial State

(c) Gazing at device (d) Instruction panel

(e) Thinking time (f) Gesturing time

(g) Device feedback (h) End of interactions

Fig. 2: A few snapshots from our VR application

Figure 2b to 2h show a sequence of interactions with a
device (table lamp). Every device in the scene was labeled
with a numbered cube next to the actual device. This cube
was named ’feedback cube’ and it was introduced during the
trial to participants. Feedback cube colour changes provided
visual feedback to participants about which interaction stage
they were at for that device. Further the instruction panel
displayed the feedback cube number so that participants could
find the device that carried the given affordance (Figure 2d).
Once the participant completed a gesture, the virtual device
activated the relevant affordance, instead of any textual or
voice feedback (like in many GES). For example, the table
lamp turned on, the speaker system played a music track or
changed the track, or the window opened etc. after the gesture
was performed.

Once a participant completes the study, the recorded ges-
ture data is pushed to a remote server. While the system
finalises this task, a virtual agent appears and reminds the
participant to complete the post questionnaire. Our pre- and
post-questionnaires were designed to understand the afore-
mentioned critical design aspects in a self-guided and remote
GES using VR. We further measured participants’ satisfaction
with how realistically they felt that the virtual hand mimics
their real hand movements, experiment completion time,
clarity of the instruction, and preferred mode of instruction
on performing the study (voice, written or both). Further we
asked users to rate the helpfulness of the visual feedback
and the device feedback mechanisms we embedded in the
study along with their satisfaction with given thinking and
gesture performance time. Finally, we asked users to rate the

likelihood of them choosing a typical GES versus self-guided
and remote VR GES. We used a 5-points Likert scales, closed
questions, 1-5 ordinal scales and ranking questions in our pre-
and post-questionnaire to obtain users’ subjective experience.

E. Gesture visualization

Once the data is collected and pushed to a remote server,
investigators can use these data files to visualize the user
performed gestures for each device affordance. We developed
another prototype to rebuild the participants’ gestures (3D
hand animation) for each affordance separately to view the
gesture from any desired angle. This helped us to better
classify and describe gestures. Additionally, the collected
gesture data was a numeric representation of a human hand’s
bones. Thus, investigators could run a classification model
with these data files if they wish to automate the classification
process, which would ease the gesture labelling and the
agreement score calculation process. As an additional benefit,
the tool helps to capture snapshots of user gestures which
makes it easier when presenting and describing the gesture
vocabularies.

IV. RESULTS

For the evaluation, we considered all participants who
completed all five stages of the experiment from installation
to post-questionnaire, i.e., N = 53. All the statistical analy-
ses were conducted using the R programming language in
RStudio.

Firstly, we tested whether there was a difference between
VR application completion time with users’ who have or
have not had previous experience with VR. Out of all
participants, 41.5% had not used VR HMD before and the
rest had at least one or more previous experiences using
VR HMD. Since each participant went through the study
only once, the samples were independent. As assessed by
Shapiro-Wilk normality test and quantile-quantile (q-q) plot
on both participant samples; experienced (p-value = 0.20) and
non-experienced (p-value = 0.23) participants, we assumed
that the distribution is normal. From the F-test (df = 21,
denom df = 30, p-value = 0.70) comparison variances of
two participant samples, we assumed that variances were
equal. Therefore, with the null hypothesis of there being no
difference in VR app completion time between experienced
and non-experienced participants, we conducted a two-tailed,
two-sample t-test. The 22 participants who did not have
previous VR experience (mean = 30.441) compared to the 31
participants with previous VR experience (mean = 29.429)
demonstrated no statistically significant difference in the
experiment completion time (t = 1.77, df = 51, p-value =
0.08). Therefore, this method for self-guided and remote GES
can be conducted with both experienced and non-experienced
participants.

Further, we investigated participants’ choice between re-
mote VR GES and in-lab experiments. According to post-
questionnaire data, 83.0% participants preferred self-guided
remote VR GES when they were asked to select their most
preferred option to participate in GES out of the two options:



in-lab experiment versus VR GES. With an intent to further
analyze this decision, we asked participants to provide the
likelihood [on a 5-point scale from 1 (Highly unlikely) to 5
(Highly likely 5)] in participating in each of these two types
of studies. Overall, the results show a neutral response mean
of 2.72/5 for the in-lab experiment, while the self-guided
and remote VR GES shows a highly likely rating with a
mean of 4.94/5. Then we conducted a Pearson’s Chi-squared
test of independence to determine if there is a relationship
between participants’ likelihood for choosing one of these
studies with their previous experience in VR. The test results
(X-squared = 2.17, df = 2, p-value = 0.34) showed that there
was no significant association between these two variables,
which indicates that previous VR experience and likelihood
of selecting self-guided remote GES are independent from
each other. Therefore, participants, regardless of previous
experience in VR, have shown a much higher likelihood of
participating in self-guided remote VR GES than in an in-lab
experiment.

We investigated the user ratings of likelihood for selecting
in-lab experiments as well. Here the Pearson’s Chi-squared
test of independence results (X-squared = 13.41, df = 4,
p-value < 0.05 (0.00944)) shows that there is a significant
relationship between the two variables; likelihood of selecting
in-lab and previous VR experience. Therefore, we conducted
a non-parametric Spearman’s rank correlation for further
analysis. The results show a correlation coefficient of -0.485
with a significant p-value < 0.05 (0.000236) which means
non-experienced participants showed a higher likelihood in
participating in an in-lab experiment, while experienced VR
participants show a lower likelihood. Since the VR consumer
market is rapidly growing [14], we recognize that the number
of experienced VR users will increase and thus there will be
an increased likelihood of participants preferring self-guided
and remote GES via immersive VR.

However, among participants’ given reasons for preferring
in-lab experiments as well, 81.8% of non-experienced partic-
ipants indicated that the standalone installation method was
difficult to execute. This is further illustrated with an overall
rating mean of 2.72/5 [from a scale from 1 (Very Dissatisfied)
to 5 (Very Satisfied)] which shows some dissatisfaction
among all non-experienced users. Overall, users’ subjective
evaluation of the installation experience is also rated at
3.34/5 on the same rating scale. We conducted unpaired two-
samples Wilcoxon test (also known as Wilcoxon rank sum
test or Mann-Whitney test) to determine whether satisfaction
in non-experienced participants was different to experienced
participant satisfaction when it comes to the installation setup,
which was 3.77/5. We selected the non-parametric test as
the non-experienced participants’ satisfaction rating was not
normally distributed, as assessed by Shapiro-Wilk’s test (p =
0.0002643). The p-value of the test is 0.000052, which is less
than the significance level alpha = 0.05. Thus we conclude
that the average satisfaction rate of the non-experienced
participants was highly significantly different from the ex-
perienced participant satisfaction rating. Nevertheless, out of
all experienced VR users, less than half (only 41.9%) had

experience in installing 3rd party VR applications. The likert
scale analysis conducted to analyse the overall participant
experience on application setup, as shown in Figure 3 with
diverging stacked bar charts indicating that more than half of
the participants (Strongly Agree - 49.0% and Agree - 17.0%)
prefer to have the application to be downloadable from
an app-store. Otherwise, for the standalone installation, a
majority (58.5%) of participants preferred to have both video
and written instructions to be presented in the information
sheet.
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Fig. 3: Evaluation of standalone installation experience

Next, we evaluated the users’ experience with the virtual
hands. Firstly, we investigated both experienced and non-
experienced participants’ favorable or unfavorable perception
of the virtual hand representation of their real hands with a
5-points likert scale from 1 (Very dissatisfied) to 5 (Very
satisfied). The overall mean of 4.81/5 indicated a very satis-
fied experience by all participants. All participants reported
that either always or often they were able to perform the
gesture they wanted and the virtual hand correctly mapped
their real hand movement. Figure 4 shows the summary of
the user evaluation of the virtual hand performance. Two
separate one-sample Wilcoxon signed rank tests were run to
determine whether the overall participant perception score
was significantly different between experienced and non-
experienced participant perceptions. As assessed by Shapiro-
Wilk’s test (p < .05) each participant type’s rating data
cannot be assumed to be normally distributed, hence we
conducted this non-parametric alternative to the one-sample
t-test. The p-value of the non-experienced participants test
is 0.126, which is greater than the significance level alpha =
0.05; similarly with experienced participants p-value = 0.109.
Thus we conclude both non-experienced and experienced
participants found the virtual hand performance equally very
satisfying.

Finally, we investigated the users’ perceptions of the fea-
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tures that were added in the VR application aiming for self-
guidance and remote conduct of GES. We evaluated users
perception on the time given to think of a gesture (thinking
time) and to perform a gesture (recording time), colour
change of the virtual hand to indicate recording of the gesture,
and the feedback mechanism we provided during the study.
As shown in Figure 5, 90.6% of participants found the gesture
thinking time to be sufficient, either always or often, whereas
86.8% participants reported that visualizing the thinking time
was either very helpful or extremely helpful. However, 9.4%
participants reported that the thinking time was sufficient only
sometimes because sometimes they had to find where the
device was in the virtual environment by looking at the given
instructions. This has taken a few seconds from their thinking
time. The feedback cube mechanism to mitigate this problem
was rated 92.5% by participants as either very or extremely
helpful. Recording time was rated as always sufficient by
88.7% participants while the rest mentioned that time is
often sufficient. Finally, 81.1% found it very or extremely
helpful to have a visualization to indicate the recording time.
Therefore, the overall perception of users on the allocated
time and visualization technique we incorporated was useful
when designing self-guided GES studies.

Further, 96.2% of the participants had rated the virtual
hand colour change during the recording time as an extremely
helpful feature and that they have noticed the change always.
While 94.3% recognised pre-training was extremely helpful,
all participants found that the voice assistant was either very
or extremely helpful. In all instances, at the expiration of
the recording time, participants see the relevant feedback (an
actuation or observation) from the device for the affordance.
This method was rated 96.2% by participants as highly satis-
fying and 92.5% of the participants always recognised that the
device responded to their gesture commands. Therefore, we
conclude that these specific features we have added towards
building self-guided and remote GES as very useful.

V. DISCUSSION AND OPEN QUESTIONS

As shown in section IV, there was a considerable number
of users who had not installed third party VR applications
before and preferred direct download from an app store. Even
though uploading the application to an app store may increase
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the reach further and improve the installation experience of
users, this may lead to unanticipated privacy concerns such
as third parties’ ability to track the usage of the app, hence
this would require further investigation.

We developed this application, with re-usbility and cus-
tomizability in mind and share the code as open source
project2 such that HCI researchers could use the app as is
or a customized version to conduct remote gesture elicitation
studies. Additionally, there is an opportunity to add more
modules by expanding the kinds of data that can be collected
(e.g., user gaze pointer data, interaction logs and facility to
embed research or consumer psychological signals measuring
devices). Thus, researchers could not only use these tools to
conduct GES but also for user behaviour analysis studies with
remote users.

A challenge that we identified with GES was when in-
vestigators had to classify the elicited gestures, describe
them and calculate the agreement scores during the analysis
phase. Literature shows that recorded gestures are most often
labelled by a human. Usually this gives elicited gestures
a subjective description, which could result in duplicate
descriptions for similar gestures making the comparison hard.
In order to overcome this challenge the HDGI ontology [47]
could be embeded for the gesture labelling process, such that
the investigator can describe a hand gesture with a pre-defined
set of labels and semantics. This could result in commonly
accepted gesture labeling, in turn resulting in comparable
qualitative gesture labels with their relevant contexts.

VI. CONCLUSION

We identified and elaborated on challenges that current
GES methods face, and introduced a novel way of conduct-
ing remote and self-guided GES using immersive VR for

2https://madhawap.github.io/vr-ges/

https://madhawap.github.io/vr-ges/
https://madhawap.github.io/vr-ges/
https://madhawap.github.io/vr-ges/


identifying users’ preferred gestures. This method especially
addresses a lack of user participation, has the potential for
an increased demographic representation, addressing the issue
of not having ecologically valid setups in gesture elicitation
studies, all while keeping the participant identities anony-
mous. We discussed the design and the development of our
VR application, along with a sample study to evaluate the
feasibility of conducting such studies in practice. We chose
the context of smart homes and let participants interact with
42 affordances across 12 devices that were presented in a
balanced order. We collected 2,226 gestures within three
weeks from 53 participants without having to spend any
time in the lab with participants. Our method shows high
participation satisfaction levels from both experienced and
non-experienced VR users. The majority indicated that they
would perform the same gesture set in a similar real-world
setup. Further, we presented participants’ acceptance of the
study and the important aspects to consider when conducting
remote and self-guided GES. We discussed possible future
directions for improving our method by integrating gesture
extraction, visualization and bringing standardised gesture
labelling into GES to improve the validity of elicited gesture
vocabularies while making the elicitation process even more
efficient compared to traditional methods. This study helped
us to continue our work during the pandemic, thus, we
share the reusable prototypes we developed with the HCI
community to continue studies even in times when in-lab
experiments are not possible.
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